+ Nếu \(x\ge1\) thì \(x^{2016}\ge x^{2015};x^2\ge x\)
\(\Rightarrow f\left(x\right)=x^{2016}-x^{2015}+x^2-x+1\ge1\) \(\forall x\ge1\)
=> f(x) vô nghiệm
+ Nếu \(x\le0\) thì \(-x^{2015}\ge0;-x\ge0\)
\(\Rightarrow f\left(x\right)=x^{2016}-x^{2015}+x^2-x+1\ge1\) \(\forall x\le0\)
=> f(x) vô nghiệm
+ Nếu 0 < x < 1, giả sử f(x) có nghiệm, ta có:
f(x) = x2016 - x2015 + x2 - x + 1 = 0 (1)
=> x2015 - x2014 + x - 1 + \(\dfrac{1}{x}\) = 0 (2)
Cộng lần lượt 2 vế của (1) và (2) ta được:
\(x^{2016}-x^{2014}+x^2+\dfrac{1}{x}=0\)
\(\Rightarrow x^{2016}+x^2+\dfrac{1}{x}=x^{2014}\) (*)
Điều này vô lý vì với 0 < x < 1 ta luôn có: x2 > x2014
\(x^{2016}>0;\dfrac{1}{x}>0\)
\(\Rightarrow x^{2016}+x^2+\dfrac{1}{x}>x^{2014}\)
Vậy ta có đpcm