thêm một cái dấu ngoặc vuông ở cuối hộ mình nha
quên chưa viết
\(VP=\left(a+b\right)\left[\left(a-b\right)^2+a\cdot b\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VT\)(đpcm)
thêm một cái dấu ngoặc vuông ở cuối hộ mình nha
quên chưa viết
\(VP=\left(a+b\right)\left[\left(a-b\right)^2+a\cdot b\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VT\)(đpcm)
Chứng minh:
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
b) \(\left(-a-b\right)^2=\left(a+b\right)^2\)
c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)
ai giúp em vs huhu
bai 1 : chứng minh
\(a,\left(a-b\right)^3=-\left(b-a\right)^3\)
\(b,\left(a-b\right)^2=\left(a+b^{ }2\right)\)
c, \(\left(x+y\right)^3=x\left(x-3y^{ }\right)^2+y\left(y-3x\right)^2\)
d\(\left(x+y^{ }\right)^3-\left(x-y^{ }\right)^3=2y\left(y^2+3x^2\right)\)
Chứng minh các đẳng thức:
a)\(\left(x-y\right).\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
b)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
Chứng minh rằng :
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
1. Rút gọn, tính giá trị biểu thức :
\(\left(a^3+3\right)\left(a^2-3a+9\right)-a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)\) tại \(a=2017^{2018}\)
2. Tìm x, biết :
a ) \(x\left(x+3\right)-x^2-11=0\)
b ) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
3. Chứng minh rằng
a ) \(\left(x+y\right)^2-\left(x+y\right)^2=-4xy\)
b ) \(\left(7n-2\right)^2-\left(2n-7\right)^2\) luôn luôn chia hết cho 9, với mọi n nguyên.
4.
a ) Chứng tỏ rằng \(x^2-4x+2017>0\) với mọi x
b ) Tìm giá trị nhỏ nhất của biểu thức :
\(Q=x^2-6x-11\)
Chứng minh rằng nếu:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2;x,y\ne0\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
1) Tìm x: \(9x^2-6x+1=0\)
2) Cho \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
Chứng minh rằng : a=b=c
3) Cho a+b=25 , ab=136
Tính a) \(a^2+b^2\)
b)\(a^4+b^4\)
Chứng minh rằng nếu \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\) với x,y khác 0 thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
1) Tìm x biết,
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
2) Rút gọn các biểu thức
a) \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
e) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
3) Chứng minh rằng các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến
a) \(9x^2-6x+2\)
b) \(x^2+x+1\)
c) \(2x^2+2x+1\)
4) Tìm GTNN của các biểu thức
a) A=\(x^2-3x+5\)
b) B=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
GIÚP MK VỚI!!!!!!!!!!