Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kóc PII

Chứng minh rằng:

a, F(x)= x400 + x200 + 1 chia hết cho G(x)= x4 + x2 + 1

b, F(x)= x1970 + x1930 + x1890 chia hết cho G(x)= x20 + x10 + 1

Akai Haruma
12 tháng 11 2018 lúc 17:37

Phần a)

Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)

Chứng minh bổ đề:

Thật vậy, theo hằng đẳng thức đáng nhớ:

\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)

Bổ đề đc chứng minh.

-----------------------------------

Ta có:

\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)

\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)

Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:

\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)

\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)

Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)

(đpcm)

Akai Haruma
12 tháng 11 2018 lúc 17:48

Phần b)

\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)

Thấy rằng:

\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)

\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)

Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)

\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)

Do đó:

\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)


Các câu hỏi tương tự
Linh Nguyễn
Xem chi tiết
Linh Ngô
Xem chi tiết
Big City Boy
Xem chi tiết
poppy Trang
Xem chi tiết
Ruby
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
TTN Béo *8a1*
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Vo Quang Huy
Xem chi tiết