\(f\left(x\right)=8x^9-9x^8+1;g\left(x\right)=\left(x-1\right)^2\)
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
chứng minh rằng:
\(\dfrac{x+2}{x-1}.\left(\dfrac{x^3}{2x+2}+1\right)-\dfrac{8x+7}{2x^2-2}>0\)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Chứng minh rằng giá trị của đa thức không phụ thuộc vào x
a) \(A=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
b) \(B=2x\left(4x+1\right)-8x^2\left(x+1\right)+\left(2x\right)^3-2x+3\)
nhanh giup di
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Bài 1: a, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
b, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
Bài 2: K thực hiện phép chia, hãy xác đinh xem đa thức dư ở trong mỗi phép chia là bao nhiêu
a, \(\left(x^3+2x^2-3x+9\right)⋮\left(x+3\right)\)
b, \(\left(9x^4-6x^3+15x^2+2x-1\right)⋮\left(3x^2-2x+5\right)\)
Cho x > 2.
Chứng minh:
\(\dfrac{x}{2}+\dfrac{8x^3}{\left(x-2\right)\left(x+2\right)^2}>9\)
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)