1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
chứng minh rằng:
\(\dfrac{x+2}{x-1}.\left(\dfrac{x^3}{2x+2}+1\right)-\dfrac{8x+7}{2x^2-2}>0\)
1) \(\left(\dfrac{-3}{4}\right)^{3x+1}=\dfrac{81}{256}\) 6) \(\left(8x-1\right)^{2n-4}=5^{2n-4}\)
2) \(172.x^2-\dfrac{7^9}{98^3}=\dfrac{1}{2^3}\) 7) \(\left(\dfrac{1}{2x}-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
3) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
4) \(\left(x+2\right)^2+\left(y-\dfrac{1}{10}\right)^2=0\)
5) \(\left(x-7\right)^{n+1}-\left(x-7\right)^{n+11}=0\)
Giúp mk với!!!!!
Chúng minh đẳng thức:
\(\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{\left(x+1\right)\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{2}{\left(x+2014\right)\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
Cho biểu thức và rút gọn
P= \(\left[\dfrac{x^2}{2x-9}\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
Cho biểu thức \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\). Tìm các giá trị của x để P<0
Chứng minh rằng với x > 0 thì: \(\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+x^3+\dfrac{1}{x^3}}\ge6\)
( \(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\) ). \(\dfrac{4x^2-4}{5}\)
\(\dfrac{x}{x-3}-\dfrac{x^2+3x}{2x+3}.\left(\dfrac{x+3}{x^2-3x}-\dfrac{x}{x^2-9}\right)\)
\(\left(\dfrac{x+1}{x}\right)^2:\left(\dfrac{x^2+3}{x^2}+\dfrac{2}{x+1}.\left(\dfrac{1}{x}+1\right)\right)\)
Các bạn giải giúp mình bài này với:
Chứng minh đẳng thức sau:
\(\dfrac{\left[x-1\right]\left[x^2+1\right]\left[x^4+1\right]\left[x^8+1\right]}{\left[x^2-x+1\right]\left[x^4-x^3+1\right]}=\dfrac{x^{16}+1}{x^9+1}\)