Để mik giúp pạn nhé:
Ta có:
\(555^2\equiv5\)(mod 10)
\(555^3\equiv5\)( mod 10)
\(555^5=555^2.555^3\equiv5.5\equiv5\)(mod 10)
---> \(555^{777}\equiv5\)(mod 10)
Suy ra:
\(333^{555^{777}}\)đồng dư với \(333^5\)
Do \(333^5=3332.3333\equiv3\)(mod 10)
Vậy chữ số tận cùng của \(333^{555^{777}}\)là 3 (1)
Làm tương tự với \(777^{555^{333}}\)có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra \(333^{555^{777}}+777^{555^{333}}\)có chữ số tận cùng là 0
Vậy \(333^{555^{777}}+777^{555^{333}}\)chia hết cho 10 (đpcm)
Đúng 0
Bình luận (1)