Bạn xem lại đề xem có sai không? $d$ từ đâu ra vậy?
Bạn xem lại đề xem có sai không? $d$ từ đâu ra vậy?
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó \(a,b,c\ne0\) đúng với mọi x và y thì: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0
b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3
Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)
Bài 3:
1) Cho a, b, c đôi một khác nhau thỏa mãn: ab+bc+ca=1
Tính giá trị biểu thức: \(A=\frac{\left(a+b\right)^2\left(b+c^2\right)\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
2) Cho \(\left\{{}\begin{matrix}x+y=a+b\\x^2+y^2=a^2+b^2\end{matrix}\right.\)
Chứng minh rằng với mọi số nguyên dương n ta có: xn+yn=an+bn.
Rút gọn các biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-2x^2}\), với x = -3; y = \(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\), với x = 2; y = -\(\frac{1}{2}\)
Câu 1:
Cho x=\(\frac{b^2+c^2-a^2}{2bc}\);y=\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
Tính giá trị P=x+y+xy
Câu 2:
Giải phương trình:
a) \(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{x}\)(x là ẩn số)
b)\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}\)+\(\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}\)+\(\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)=0
(a, b, c là hằng số và đôi một khác nhau)
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)