a: Sửa đề: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
b: \(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right)\cdot\left(2n-2\right)\cdot2n\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là hai số liên tiếp
nên \(n\left(n-1\right)⋮2\)
=>\(4n\left(n-1\right)⋮8\)
=>\(4n\left(n-1\right)\left(2n-1\right)⋮8\)