Ta có: \(1+\cot^2a=\dfrac{AC^2}{AC^2}+\dfrac{AB^2}{AC^2}=\dfrac{BC^2}{AC^2}=\dfrac{1}{\dfrac{AC^2}{BC^2}}=\dfrac{1}{\sin^2a}\)
Ta có: \(1+\cot^2a=\dfrac{AC^2}{AC^2}+\dfrac{AB^2}{AC^2}=\dfrac{BC^2}{AC^2}=\dfrac{1}{\dfrac{AC^2}{BC^2}}=\dfrac{1}{\sin^2a}\)
1) Chứng minh các hệ thức : a) 1+ \(\tan^2_{\alpha}\)=\(\dfrac{1}{\cos^2_{\alpha}}\)
b) \(\dfrac{\cos_{\alpha}}{1-\sin_{\alpha}}\)=1+\(\dfrac{\sin_{\alpha}}{\cos_{\alpha}}\)
2) Cho tam giác ABC vuông tại A , đường cao AH, HD , HE lần lượt là đường cao của của AHB và AHC .
Chứng minh rằng : a) \(\dfrac{AB^2}{AC^2}\) = \(\dfrac{HB}{HC}\) b) \(\dfrac{AB^3}{AC^3}\)= \(\dfrac{DB}{EC}\)
3) Cho tam giác ABC cân tại A , đường cao AH và BK . Chứng minh rằng :
\(\dfrac{1}{BK^2}\)= \(\dfrac{1}{BC^2}\)+ \(\dfrac{1}{4AH^2}\)
Chứng minh hệ thức:
\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
Chứng minh các đẳng thức sau:
a) \(\dfrac{1}{1+\tan\alpha}+\dfrac{1}{1+\cot\alpha}=1\) b) \(\sin^4x-\cos^4x=2\sin^2x-1\)
c) \(\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}=\tan^2x+\cot^2x+2\)
d) \(\sin x.\cos x.\left(1+\tan x\right)\left(1+\cot x\right)=1+2\sin x\)
CM các hệ thức sau:
a) \(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
b) \(1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\)
c) \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos^2\alpha\)
d) \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
Cho \(\cot\alpha=\dfrac{1}{3}\). Tính giá trị biểu thức \(Q=\dfrac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\)
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị
của góc nhọn a
\(\left(\sqrt{\dfrac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\dfrac{1-\sin\alpha}{1+\sin\alpha}}\right)\dfrac{1}{\sqrt{1+\tan^2\alpha}}\)
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)