1/ Chứng minh công thức Hê-rông
2/ Cho 3 số x, y, z > 0. Chứng minh rằng: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}.\)
Cho \(x;y>0\) thỏa mãn \(x+y\le1\). Chứng minh \(\dfrac{1}{x^2+y^2}+\dfrac{2020}{xy}\ge8082\)
Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) Chứng minh : \(x^{2013}+y^{2013}=0\)
Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) Chứng minh : \(x^{2013}+y^{2013=0}\)
cho \(\sqrt{x-1}+x^2=\sqrt{y-1}+y^2\)
chứng minh x=y
cho x+y=2. Chứng minh \(x^2y^2\left(x^2+y^2\right)< =2\) (x,y>0)
Chứng minh rằng với mọi số dương x,y ta có : \(\dfrac{x}{y} +\dfrac{y}{x} >hoặc = \dfrac{\sqrt{x}}{\sqrt{y}} + \dfrac{\sqrt{y}}{\sqrt{x}} \)
Cho x,y,z>1 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
Chứng minh \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y