a: Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: BE=AC
=>BE=BD
hay ΔBED cân tại B
b: Xét ΔACD và ΔBDC có
AC=BD
góc ACD=góc BDC(=góc BEC)
CD chung
Do đó: ΔACD=ΔBDC
c: Xét hình thang ABCD có AC=BD
nên ABCD là hình thang cân
a: Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: BE=AC
=>BE=BD
hay ΔBED cân tại B
b: Xét ΔACD và ΔBDC có
AC=BD
góc ACD=góc BDC(=góc BEC)
CD chung
Do đó: ΔACD=ΔBDC
c: Xét hình thang ABCD có AC=BD
nên ABCD là hình thang cân
Chứng minh định lí : "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau :
Cho hình thang ABCD (AB // CD) có AC = BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng minh rằng :
a) \(\Delta BDE\) là tam giác cân
b) \(\Delta ACD=\Delta BDC\)
c) Hình thang ABCD là hình thang cân
Cho hình thang cân ABCD ( AB // CD ) . Qua B kẻ đường thẳng song song với AC cắt đường thẳng DC tại E . Chứng minh : a ) ∆ACB = ∆ EBC b ) ∆BDE là tam giác cân c ) Góc ACD = góc BDC
Cho tam giác ABC có AB < AC, đường trung trực của BC cắt BC,AC lần
lượt tại M,N. Qua A kẻ đường thẳng vuông góc với MN, đường thẳng này cắt BN tại D.
a)Chứng minh: Tam giác AND cân
b) Chứng minh: ABCD là hình thang cân
Câu 2. Cho hình thang cân ABCD (AB // CD). M là điểm trên cạnh AD, đường thẳng đi qua M và song song với DC cắt BC tại N. Gọi O là giao điểm của CM và DN.
a)Chứng minh: ABNM là hình thang cân
b)Chứng minh: OD = OC và OM = ON
Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang ABCD (AB//CD) có AC=BD. Qua B kẻ đường thẳng song song với AC, cắt đường thẳng DC tại E. Chứng minh rằng:
a) Tam giác BDE là tam giác cân.
b) Tam giác ACD = tam giác BDC.
c) Hình thang ABCD là hình thang cân.
Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.
Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.
a) Chứng minh tam giác OMN và OPQ cân tại O.
b) Chứng minh tứ giác MNPQ là hình thang cân.
c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.
Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 3.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 4. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 5. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Cho hình thang cân ABCD có đáy AB song song với CD và AB < CD.
a) Gọi I là giao điểm của hai đường chéo hình thang ABCD. Chứng minh
IA = IB, IC = ID.
b) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là đường trung
trực của đoạn AB vừa là đường trung trực của đoạn CD.
c) Tính các góc của hình thang ABCD nếu góc ABC - ADC = 180 độ.
Cho tam giác đều ABC và điểm M thuộc miền trong của tam giác.Qua M kẻ đường thẳng song song với AC cắt BC ở E,đường thẳng song song với AB cắt Ac tại F.Chứng minh rằng:
a,Các tứ giác BDME,CFME,ADMF là các hình thang cân
b,Chu vi tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC
c,Góc DME=góc DMF=góc EMF
Ai giải được nhanh và đúng nhất.mình tick liền cho nha:>