\(a,MN//DC\Rightarrow MN//AB\Rightarrow ABNM\) là hình thang
Ta có \(\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ADC}\left(đồng.vị\right)\\\widehat{BNM}=\widehat{BCD}\left(đồng.vị\right)\\\widehat{ADC}=\widehat{BCD}\left(ABCD.là.hthang.cân\right)\end{matrix}\right.\Rightarrow\widehat{AMN}=\widehat{BNM}\)
\(\Rightarrow ABNM\) là hthang cân
\(b,\left\{{}\begin{matrix}DM=NC\left(hthang.cân.DMNC\right)\\\widehat{MDC}=\widehat{NCD}\left(hthang.cân.DMNC\right)\\Cạnh.DC.chung\end{matrix}\right.\Rightarrow\Delta DMC=\Delta CND\left(c.g.c\right)\\ \Rightarrow\widehat{NDC}=\widehat{MCD}\Rightarrow\Delta ODC.cân.tại.O\Rightarrow OC=OD\)
Ta có \(\left\{{}\begin{matrix}\widehat{ODC}=\widehat{OCD}\left(cm.trên\right)\\\widehat{ODC}=\widehat{ONM}\left(so.le.trong\right)\\\widehat{OCD}=\widehat{OMN}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\widehat{ONM}=\widehat{ONM}\)
\(\Rightarrow\Delta OMN.cân.tại.O\\ \Rightarrow OM=ON\)