\(x^4+x^2+1=\left(x^4+2.x^2+\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(x^2+xy+y^2+1=\left(x^2+2.x.\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)