Chứng minh các biểu thức sau không phụ thuộc giá trị của x:
A = cos2x + cos2(x+\(\frac{2\text{π}}{3}\)) + cos2(x-\(\frac{2\text{π}}{3}\))
B = sin2x + sin2(x+\(\frac{2\text{π}}{3}\)) + sin2(x-\(\frac{2\text{π}}{3}\))
Chứng minh đẳng thức
a) \(\dfrac{1-sin2\alpha+cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\left(\dfrac{\pi}{4}-\alpha\right)\)
b) \(\dfrac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}=cot\alpha\)
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha\) :
a) \(A=2\left(\sin^6\alpha+\cos^6\alpha\right)-3\left(\sin^4\alpha+\cos^4\alpha\right)\)
b) \(B=4\left(\sin^4\alpha+\cos^4\alpha\right)-\cos4\alpha\)
c) \(C=8\left(\cos^8\alpha-\sin^8\alpha\right)-\cos6\alpha-7\cos2\alpha\)
Rút gọn các biểu thức :
a) \(\dfrac{\tan2\alpha}{\tan4\alpha-\tan2\alpha}\)
b) \(\sqrt{1+\sin\alpha}-\sqrt{1-\sin\alpha}\), với \(0< \alpha< \dfrac{\pi}{2}\)
c) \(\dfrac{3-4\cos2\alpha+\cos4\alpha}{3+4\cos2\alpha+\cos4\alpha}\)
d) \(\dfrac{\sin\alpha+\sin3\alpha+\sin5\alpha}{\cos\alpha+\cos3\alpha+\cos5\alpha}\)
Chứng minh các biểu thức sau không phụ thuộc x :
a) \(A=\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}-x\right)\)
b) \(B=\cos\left(\dfrac{\pi}{6}-x\right)-\sin\left(\dfrac{\pi}{3}+x\right)\)
c) \(C=\sin^2x+\cos\left(\dfrac{\pi}{3}-x\right).\cos\left(\dfrac{\pi}{3}+x\right)\)
d) \(D=\dfrac{1-\cos2x+\sin2x}{1+\cos2x+\sin2x}.\cot x\)
Chúng minh biểu thức sau không phụ thuộc vào x
A = \(\sqrt{4sin^4x+sin^22x}\) + 4 cos2 ( \(\dfrac{\pi}{4}\) - \(\dfrac{x}{2}\) )
Đơn giản biểu thức
A= 2cosx + 3cos( π - x) - sin ( \(\dfrac{7\Pi}{2}\) - x ) + tan ( \(\dfrac{3\Pi}{2}\)- x )
Chứng minh các đẳng thức sau:
a, sinx + cosx = \(\sqrt{2}\) sin(x + \(\frac{\text{π}}{4}\)) = \(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
b, sinx - cosx = \(\sqrt{2}\) sin(x - \(\frac{\text{π}}{4}\)) = -\(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
c, sin4x - cos4x + sin2x = \(\sqrt{2}\) cos(2x - \(\frac{\text{π}}{4}\))
Sin(x-π/2)+cos(x-π)+tan(5π/2-x)+tan(x-π/2)=-2cosx