Bài 1:
a)
ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)
\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)
vậy \(A=\dfrac{1}{2}\)
b)
\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)
Bài 2:
\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)
suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)
\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)
giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)
hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)
\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)
b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)
mà \(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)
hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)
bài 3:
a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)
b) áp dụng BĐT tam giác, ta có:
\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)
suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0\: \: \: \: \: \: \)
đồng thời \(abc>0\) với mọi a, b, c dương.
nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)
ko tìm dc dấu bằng xảy ra.
Giải phương trình:
a) \(2log_2x+log_{\dfrac{1}{2}}\left(1-\sqrt{x}\right)=\dfrac{1}{2}log_{\sqrt{2}}\left(x-2\sqrt{x}+2\right)\)
b) \(log_3\dfrac{x^2-2x+1}{x}+x^2+1=3x\)
Giúp mình hai câu này với ạ.
Tính giá trị của biểu thức :
a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}\) với \(a=\pi-3\sqrt{2}\)
b) \(B=\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left[a^{\frac{2}{3}}+b^{\frac{2}{3}}-\left(ab\right)^{\frac{2}{3}}\right]\) với \(a=7-\sqrt{2},b=\sqrt{2}+3\)
Cho \(\left(\dfrac{1}{2}\right)^x< 2\). Mệnh đề nào sau đây đúng :
A. x > -2
B. x < -2
C. x < 2
D. \(\forall x\in R\)
Cho a,b là các số thực dương thỏa mãn \(\log_ab=2\). Tính giá trị của \(P=\log_{\dfrac{\sqrt{a}}{b}}\left(a.\sqrt[3]{b}\right)\)
1. Cho hai số dương x, y thỏa mãn \(\log_2\frac{x^2+5y^2}{x^2+10xy+y^2}+1+x^2-10xy+9y^2\le0\). Gọi M, m lần lượt là GTLN, GTNN của \(P=\frac{x^2+xy+9y^2}{xy+y^2}\) Tính \(T=10M-m\)
A. 50
B. 60
C. 104
D. 94
2. Cho hai số dương x, y thỏa mãn \(\log_2\left(4x+y+2xy+2\right)^{y+2}=8-\left(2x-2\right)\left(y+2\right)\). GTNN của biểu thức \(P=2x+y\) có dạng \(M=a\sqrt{b}+c\) với a, b, c \(\in\) N, a>2. Tính \(S=a+b+c\)
A. 19
B. 3
C. 17
D. 7
Tính đạo hàm của các hàm số sau:
a) \(y = (2x^2 - x + 1)^{\frac{1}{3}}\)
b) \(y = (3x+1)^{\pi}\)
c) \(y = \sqrt[3]{\dfrac{1}{x-1}}\)
d) \(y =\log_{3} \left(\dfrac{x+1}{x-1}\right)\)
e) \(y = 3^{x^{2}}\)
f) \(y = \left(\dfrac{1}{2}\right)^{x^2-1}\)
h) \(y = (x+1) . e^{cosx}\)
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Tìm tập xác định của các hàm số :
a) \(y=\log_{0,3}\frac{x-4}{x+4}\)
b) \(y=\log_{\pi}\left(2^x-2\right)\)
c) \(y=\sqrt{\log_3\left(x^2-3x+2\right)+4-x}\)
d) \(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x-8}}}\)
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(\log5+\log\left(x^2+1\right)\ge\log\left(mx^2+4x+m\right)\) đúng với mọi \(x\)?
A. 0
B. 1
C. 2
D. 4