Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Quỳnh Hương

Tính giá trị của biểu thức :

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}\) với \(a=\pi-3\sqrt{2}\)

b) \(B=\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left[a^{\frac{2}{3}}+b^{\frac{2}{3}}-\left(ab\right)^{\frac{2}{3}}\right]\) với \(a=7-\sqrt{2},b=\sqrt{2}+3\)

Nguyễn Bình Nguyên
26 tháng 3 2016 lúc 1:22

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)

Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)

b) Rút gọn B ta có :

\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)

Do đó :

\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)


Các câu hỏi tương tự
Phạm Minh Khánh
Xem chi tiết
Tạ Tương Thái Tài
Xem chi tiết
Lê Việt Hiếu
Xem chi tiết
Nguyễn Thị Thu Thảo
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
Trần Thụy Nhật Trúc
Xem chi tiết
Phạm Thị Phương Thanh
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
Nguyễn Tiến Mạnh
Xem chi tiết