\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
chứng minh\(\frac{\sin\alpha}{\cot\alpha}+\cos\alpha=\frac{1}{\cos\alpha}\)
Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3
1. Đơn giản biểu thức
a. \(\sin\alpha\cdot\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
b. \(\left(\sin^2\alpha+\cos^2\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
c. \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
CMR: Với mọi góc nhọn \(\alpha\) ta có :
\(a,\sin^2\alpha+\cos^2\alpha=1\)
\(b,\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(c,\tan^2\alpha+1=\frac{1}{\cos^2\alpha}\)
1 . Tính tan\(\alpha\) , Cot\(\alpha\) biết :
a) Sin\(\alpha\) = 0,6
b) Cos\(\alpha\) = \(\frac{1}{3}\)
2 . Tính Sin\(\alpha\) , Cos\(\alpha\) biết
a) Tan\(\alpha\) = \(\frac{2}{3}\)
b) Cot\(\alpha\) = \(\frac{3}{5}\)
CÁC BẠN GIÚP MÌNH VỚI !~
Chứng minh
\(a)sin^6x+cos^6x=1-3sin^2xcos^2x\\ b)tan^2\alpha=sin^2\alpha+sin^2\alpha+tan^2\alpha\)