Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kafu Chino

+Chứng minh:
\(10^n+18n-28\text{ }⋮\text{ }27\text{ }v\text{ới }n\in N\)

Diệu Huyền
29 tháng 8 2019 lúc 11:53

Chứng minh A= 10 ^n + 18n - 1 chia hết cho 27

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)


Các câu hỏi tương tự
Kafu Chino
Xem chi tiết
Kafu Chino
Xem chi tiết
Kafu Chino
Xem chi tiết
Kafu Chino
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Kafu Chino
Xem chi tiết
Kafu Chino
Xem chi tiết
Kafu Chino
Xem chi tiết
Tâm Lê
Xem chi tiết