\(a)\sqrt 2 \approx 1,1412... \in I;\,\,\,\,\,b)\sqrt 9 = 3 \notin I;\,\,\,\,c)\,\pi \approx 3,141... \in I;\,\,\,\,\,d)\sqrt 4 = 2 \in \mathbb{Q}\)
Vậy các phát biểu a,c,d đúng.
\(a)\sqrt 2 \approx 1,1412... \in I;\,\,\,\,\,b)\sqrt 9 = 3 \notin I;\,\,\,\,c)\,\pi \approx 3,141... \in I;\,\,\,\,\,d)\sqrt 4 = 2 \in \mathbb{Q}\)
Vậy các phát biểu a,c,d đúng.
Dùng máy tính cầm tay để tính các căn bậc hai số học sau (làm tròn đến 3 chữ số thập phân).
\(a)\sqrt {2250} ;\,\,\,\,\,\,b)\sqrt {12} ;\,\,\,\,\,\,\,c)\sqrt 5 \,\,\,\,\,\,\,\,\,d)\sqrt {624} \)
Hoàn thành các phát biểu sau:
a) Số a=5,123 là một số thập phân hữu hạn nên a là số .?.
b) Số b = 6,15555... = 6,1(5) là một số thập phân vô hạn tuần hoàn nên b là số .?.
c) Người ta chứng minh được \(\pi= 3,14159265...\) là một số thập phân vô hạn không tuần hoàn. Vậy \(\pi\) là số ?.
d) Cho biết số c=2,23606... là một số thập phân vô hạn không tuần hoàn. Vậy c là số .?.
Tính:
\(a)\sqrt {64} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b)\sqrt {{{25}^2}} ;\,\,\,\,\,\,\,\,\,\,\,c)\sqrt {{{\left( { - 5} \right)}^2}} .\)
Dùng máy tính cầm tay để tính các căn bậc hai số học sau:
\(\sqrt 3 ;\,\sqrt {15\,\,129} ;\,\sqrt {10\,\,000} ;\,\sqrt {10} \).
Tìm số hữu tỉ trong các số sau:
\(12;\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{2}{3};\,\,\,\,\,\,3,\left( {14} \right);\,\,\,\,\,\,\,0,123;\,\,\,\,\,\,\,\,\sqrt 3 \)
a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân:
\(\frac{{15}}{8};\,\,\,\frac{{ - 99}}{{20}};\,\,\,\frac{{40}}{9};\,\,\, - \frac{{44}}{7}\)
b) Trong các số thập phân vừa tính được, hãy chỉ ra các số thập phân vô hạn tuần hoàn.
Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân: \(\frac{{12}}{{25}};\frac{{27}}{2};\frac{{10}}{9}\)
Hãy thực hiện các phép chia sau đây:
\(3:2 = ?\,\,\,\,\,\,\,\,\,\,\,37:25 = ?\,\,\,\,\,\,\,\,5:3 = ?\,\,\,\,\,\,1:9 = ?\)
b) Dùng kết quả trên để viết các số \(\frac{3}{2};\frac{{37}}{{25}};\frac{5}{3};\frac{1}{9}\) dưới dạng số thập phân.
a) Tìm giá trị của x2 với x lần lượt bằng 2; 3; 4; 5; 10.
b) Tìm số thực không âm x với x2 lần lượt bằng 4; 9; 16; 25; 100.