Cho hàm số \(y=x^4-2x^2\) có đồ thị (C) . Hỏi có bao nhiêu tiếp tuyến của đồ thị (C) song song với trục hoành ?
Cho hàm số y=f(x) có đạo hàm trên R và thỏa mãn f(1+3x)=2x-f(1-2x) với mọi \(x\in R\) . Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 .
Cho hàm số \(f\left(x\right)=\sqrt{2x^2-4}\) . Viết phương trình tiếp tuyến cảu đồ thị hàm số tại điểm có hoành độ tiếp điểm bằng tung độ tiếp điểm .
Tìm m để đường thẳng d : y= m-x cắt đồ thị hàm số (C) : \(y=\dfrac{x-1}{x+1}\) tại hai điểm phân biệt A,B sao cho các tiếp tuyến của (C) tại A và B song song nhau .
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=x^4-mx^2+3m+1\) tại điểm có hoành độ bằng -1 đi qua điểm A(0;2) .
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=x^3-2x^2+3mx+1\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;3) .
Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 2x2 + x - 1 tại điểm M có hoành độ bằng 1
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=\dfrac{mx-1}{x-2}\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;-2) .
Cho hàm số \(y=\dfrac{x+b}{ax-2}\) có hàm số (C) . Biết a,b là các giá trị thực sao cho tiếp tuyến của (C) tại điểm M(1;-2) song song với đường thẳng d: 3x+y-4=0 . Tính a+b .