Nếu \(x =y = z = t\) vẫn thỏa gía trị : \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}\)
\(\Rightarrow P=\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}+\frac{2x}{2x}=4\)
Nếu có ít nhất 2 số khác nhau, giả sử \(x\ne y\) tính chất tỉ lệ thức:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{\left(x-y\right)}{\left(y+z+t-z-t-x\right)}=\frac{\left(x-y\right)}{\left(y-x\right)}=-1\)
\(\Rightarrow x=-\left(y+z+t\right)\Rightarrow x+y+z+t=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(z+y\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{\left(x+y\right)}{\left(z+t\right)}=-1\\\frac{\left(y+z\right)}{\left(t+x\right)}=-1\\\frac{\left(z+t\right)}{\left(x+y\right)}=-1\\\frac{\left(t+x\right)}{\left(z+y\right)}=-1\end{matrix}\right.\)
\(\Rightarrow P=-1-1-1-1=-4\)
Vậy P có giá trị nguyên