1/ Chứng minh công thức Hê-rông
2/ Cho 3 số x, y, z > 0. Chứng minh rằng: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}.\)
1.Cho x, y \(\ge\)0 và x+ y=1
Chứng minh rằng : \(x^3+y^3\ge\dfrac{1}{4}\)
2. Cho \(a,b,c\ge0\).Chứng minh rằng:
a, \(a^3+b^3>ab\left(a+b\right)\)
b, \(a^3+b^3+c^3\ge a^2b+ b^2c+c^2a\)
3. Cho x+ y+ z=3 và x, y, z>0. Chứng minh rằng:
a, \(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{3}{2}\)
b, \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{3}{2}\)
Chứng minh \(\dfrac{1}{x^2+y+z}+\dfrac{1}{y^2+z+x}+\dfrac{1}{z^2+x+y}\ge\dfrac{3}{x+y+z}\)
Cho \(x^6+y^6+z^6=3\) và \(x;y;z>0\)
Chứng minh rằng:
\(\dfrac{x^3}{yz}+\dfrac{y^3}{zx}+\dfrac{z^3}{xy}\ge x^3y^3+y^3z^3+z^3x^3\)
Chứng minh bất đẳng thức
Cho x, y, z là các số dương (chứng minh hộ mình phần b) thôi)
a) CMR : \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) Cho x, y, z thỏa mãn : \(3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=12\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
CMR : \(\dfrac{1}{4x+y+z}+\dfrac{1}{x+4y+z}+\dfrac{1}{x+y+4z}\le\dfrac{1}{6}\)
Cho x,y,z>1 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)
Chứng minh \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
Với a,b,c≥0 và x,y,z>0. Chứng minh \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Bài 1: Cho a, b, c ≥ 0
Chứng minh rằng: \(a^3+b^3+c^3\ge\dfrac{a^2b+b^2c+c^2a}{3}\)
Bài 2: Với a ≥0. Thì\(\sqrt[3]{a}+\sqrt[3]{a^2}\le1+a\)
Bài 3: Chứng minh rằng:\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge6\). Với x, y, z>0