Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Phương Anh

Cho x,y,z>0. Tìm min: P=\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)

Lightning Farron
20 tháng 2 2017 lúc 22:07

Cách khác:

Áp dụng BĐT AM-GM ta có:

\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)

\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)

soyeon_Tiểubàng giải
20 tháng 2 2017 lúc 22:08

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)

Dau "=" xay ra khi x = y = z

Lightning Farron
20 tháng 2 2017 lúc 22:04

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)

\(\ge \frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)


Các câu hỏi tương tự
Phác Chí Mẫn
Xem chi tiết
Roxie2k7
Xem chi tiết
Trí Phạm
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Nguyễn Công Hiếu
Xem chi tiết
My boyfriend will foreve...
Xem chi tiết
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết