Violympic toán 8

Hoàng Phương Anh

Cho x,y,z>0. Tìm min: P=\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)

Lightning Farron
20 tháng 2 2017 lúc 22:07

Cách khác:

Áp dụng BĐT AM-GM ta có:

\(2yz\le y^2+z^2\Rightarrow x^2+2yz\le x^2+y^2+z^2\)

\(\Rightarrow\frac{x^2}{x^2+2yz}\ge\frac{x^2}{x^2+y^2+z^2}\). Tương tự ta cũng có: \(\left\{\begin{matrix}\frac{y^2}{y^2+2xz}\ge\frac{y^2}{x^2+y^2+z^2}\\\frac{z^2}{z^2+2xy}\ge\frac{z^2}{x^2+y^2+z^2}\end{matrix}\right.\)

Cộng theo vế rồi thu gọn ta cũng được \(P_{Min}=1\)

Bình luận (3)
soyeon_Tiểubàng giải
20 tháng 2 2017 lúc 22:08

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

P = \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\)\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=1\)

Dau "=" xay ra khi x = y = z

Bình luận (0)
Lightning Farron
20 tháng 2 2017 lúc 22:04

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)

\(\ge \frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}\)

\(=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Bình luận (7)

Các câu hỏi tương tự
Phác Chí Mẫn
Xem chi tiết
Roxie2k7
Xem chi tiết
Trí Phạm
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Nguyễn Công Hiếu
Xem chi tiết
My boyfriend will foreve...
Xem chi tiết
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết