Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
cho x+y+z=0. tính A=(xy+2z2)(yz+2x2)(zx+2y2)/(2xy2+2yz2+2zx2+3xyz)
Cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{x^2+2xy}\)
Cho x,y,z>0. Tìm min: P=\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
cho x,y,z đôi một khác nhau t/m
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
tính \(P=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị biểu thức:
A=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
Cho x, y, z > 0 thỏa x + y + z = 1
Cmr: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Cho\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính\(E=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)