Cho x, y, z là các số thực thỏa mãn \(x^2+y^{^{ }2}+z^2=8\). Tìm GTLN của biểu thức M=\(\left|x^3-y^3\right|+\left|y^3-z^3\right|+\left|z^3-x^3\right|\)
Cho x,y,z là các số thực thỏa mãn \(x^2+y^2+z^2=8\). Tìm GTLN của biểu thức \(M=\left|x^3-y^3\right|+\left|y^3-z^3\right|+\left|z^3-x^3\right|\)
Cho x,y,z là các số thực dương thỏa mãn x+y-z+1=0.Tìm GTLN của biểu thức \(P=\frac{x^3y^3}{\left(x+yz\right)\left(y+xz\right)\left(z+xy\right)^2}\)
Cho x, y, z là 3 số thực thỏa mãn điều kiện:
\(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
Tìm GTLN và GTNN của biểu thức P biết P=x+y+z
cho x,y,z là các số dương thỏa mãn x3+y3+z3=8
tìm giá trị nhỏ nhất của biểu thức H=\(\frac{x^2+y^2}{xy\left(x+y\right)^3}+\frac{y^2+z^2}{yz\left(y+z\right)^3}+\frac{z^2+x^2}{zx\left(z+x\right)^3}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z+\sqrt{xyz}=4\). Rút gọn biểu thức: \(A=\sqrt{x.\left(4-y\right).\left(4-z\right)}+\sqrt{y.\left(4-z\right).\left(4-x\right)}+\sqrt{z.\left(4-x\right).\left(4-y\right)}-\sqrt{xyz}\)
Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính: \(M=x^{10}+y^{100}+z^{1000}\)