Cho x , y , z là 3 số thực dương thỏa mãn điều kiện : \(x+y+z+\sqrt{xyz}=4\)
Rút gọn biểu thức : B = \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
cho x,y,z là các số dương thỏa mãn x+y+z+\(\sqrt{yz}\)=4.CM
\(\sqrt{x\left(4-y\right)\left(4-z\right)}\)+\(\sqrt{y\left(4-z\right)\left(4-x\right)}\)+\(\sqrt{z\left(4-x\right)\left(4-y\right)}\)=8+\(\sqrt{xyz}\)
1. Giải hpt : a) \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{2017}\\\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}=3+\sqrt[3]{xyz}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt[4]{x-1}+\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\end{matrix}\right.\)
Hóng cao nhân I
1. Giải hệ phương trình \(\left\{{}\begin{matrix}3\sqrt{x+2y}=4-x-2y\\\sqrt[3]{2x+6}+\sqrt{2y}=2\end{matrix}\right.\)
2. Cho 3 số thực dương x, y, z. Tìm giá trị lớn nhất của biểu thức
\(S=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\)
câu 1 :
Cho 3 số x,y,z thỏa mãn 0<x,y,z≤1 và x+y+z=2
Tìm GTNN của \(A=\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
câu 2 :
Tìm giá trị lớn nhất của A
Với a,b,c , d là các số dương và \(a+b+c+d\le1\)
\(A=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=\(\sqrt{2}\).Tìm GTNN của biểu thức \(T=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\dfrac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{matrix}\right.\)
Cho 3 số dương x;y;z thỏa mãn x+y+z=6. CMR: \(x^2+y^2+z^2-xy-yz-xz+xyz\ge8\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)