Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)
Cho x, y, z là 3 số dương thỏa mãn xy + yz + zx = 3. Chứng minh rằng:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho các số dương x,y,z. CM \(\frac{x^4}{y+z}+\frac{y^4}{x+z}+\frac{z^4}{x+y}\ge\frac{1}{2}\left(x^3+y^3+z^3\right)\)
Cho x, y, z >0 thoả mãn \(x^2+y^2+z^2=1\) . Cmr: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
cho các số x,y,z thỏa mãn 0<x<y<z tìm gtnn của P=\(\frac{x^3z}{y^2\left(xz+y^2\right)}+\frac{y^4}{z^2\left(xz+y^2\right)}+\frac{z^3+15x^3}{x^2z}\)
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z