x+y+z=a\(\rightarrow\frac{1}{x+y+z}=\frac{1}{a}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=z\\a=x\\a=y\end{matrix}\right.\)
thay vào ta đều tính được S=0