Ta có: \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{yz}{xyz}\)
\(\Leftrightarrow x+y+z=yz+xz+yz\)
Ta có: \(\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(=\left(xy-x-y+1\right)\left(z-1\right)\)
\(=xyz-xy-xz+x-yz+y+z-1\)
\(=\left(xyz-1\right)+\left(x+y+z\right)-\left(xy+yz+xz\right)\)
\(=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow x=y=z=1\)
Vậy: \(P=\left(x^{19}-1\right)\left(y^5-1\right)\left(z^{2016}-1\right)\)
\(=\left(1^{19}-1\right)\left(1^5-1\right)\left(1^{2016}-1\right)\)
\(=0\)