Áp dụng bđt AM-GM:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{xz}\)
Nhân theo vế:\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
\("="\) khi x=y=z
Khi đó hiển nhiên \(x^3+y^3+z^3=3xyz\)
Áp dụng bđt AM-GM:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{xz}\)
Nhân theo vế:\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
\("="\) khi x=y=z
Khi đó hiển nhiên \(x^3+y^3+z^3=3xyz\)
Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng:
\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)
Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
cho x,y,z là các số thực dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{10}{x+y+z}\). chứng minh rằng
\(x^3+y^3+z^3\le5xyz\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).CM \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
mong mọi nguòi giúp thank you
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=1
CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)
Tìm 3 số nguyên dương x,y,z thỏa mãn \(x^2+y^2+z^2=3xyz \)
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z