cho x,y,z là 3 số thược dương thỏa mãn: (x+y)(y+z)(z+x)=8xyz. Chứng minh rằng: x^3+y^3+z^3=3xyz
Cho 3 số dương x,y,z thỏa mãn x+y+z=1
CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).CM \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
mong mọi nguòi giúp thank you
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). Tìm Max \(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Cho 3 số thực dương x,y,z thỏa \(x^2+y^2+z^2\le3\) Tìm GTLN của biểu thức \(H=\frac{y}{x^2+2y+3}+\frac{z}{y^2+2z+3}+\frac{x}{z^2+x+3}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x^3+y^3+z^3=1\). CMR:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
Cho x, y, z là các số thực dương thỏa mãn điều kiện \(x^2+y^2+z^2=3\). CMR : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9}{x+y+z}\)