Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).CM \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
mong mọi nguòi giúp thank you
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). Tìm Max \(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
Cho các số thực x,y,z \(\ne-1\) thỏa mãn x + y + z = 3 . Chứng minh \(\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1}\le\dfrac{25}{3\sqrt[3]{4xy+4yz+4xz}}\)
Cho các số dương x,y,z thỏa mãn \(xy+yz+zx=1\)
Chứng minh rằng \(\dfrac{x}{1+yz}+\dfrac{y}{1+zx}+\dfrac{z}{1+xy}\ge\dfrac{3\sqrt{3}}{4}\)
1. Cho các số thực x, y, z thỏa mãn điều kiện \(\left\{{}\begin{matrix}x-y+z=3\\x^2+y^2+z^2=5\end{matrix}\right.\)
\(P=\dfrac{x+y-2}{z+2}\) đạt giá trị lớn nhất là bao nhiêu?
2. Cho \(f\left(x\right)=2021x^2+\dfrac{6y^2}{2021}-4xy-\dfrac{y}{2021}+x+\dfrac{m^2}{2021}\)
Tìm m để \(f\left(x\right)>0\forall x,y\)
3. Cho hệ bất phương trình \(\left\{{}\begin{matrix}\left|x+1\right|\le1\\\dfrac{x}{m}< 1\end{matrix}\right.\) (m ≠ 0 là tham số thực)
Tìm tất cả các giá trị của tham số m để hệ bpt có đúng 3 nghiệm nguyên
Cho x, y, z là các số thực dương thoả mãn xyz=1 . Chứng minh rằng:
\(\dfrac{x^5-x^2}{x^5+y^2+z^2}+\dfrac{y^5-y^2}{y^5+x^2+z^2}+\dfrac{z^5-z^2}{z^5+x^2+y^2}\ge0\)