@Nguyễn Việt Lâm
@Lê Thị Thục Hiền
@Phạm Minh Quang
\(P=\sum\frac{\sqrt{\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x+y\right)^2}}{4yz+1}\ge\frac{\sqrt{3}}{2}\sum\frac{x+y}{\left(y+z\right)^2+1}\)
Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow a+b+c=3\)
\(P=\frac{\sqrt{3}}{2}\sum\frac{a}{b^2+1}=\frac{\sqrt{3}}{2}\sum\left(a-\frac{ab^2}{b^2+1}\right)\ge\frac{\sqrt{3}}{2}\sum\left(a-\frac{ab^2}{2b}\right)\)
\(P\ge\frac{\sqrt{3}}{2}\left(a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\right)\)
\(P\ge\frac{\sqrt{3}}{2}\left(a+b+c-\frac{1}{6}\left(a+b+c\right)^2\right)=\frac{3\sqrt{3}}{4}\)
\(P_{min}=\frac{3\sqrt{3}}{4}\) khi \(a=b=c=1\) hay \(x=y=z=\frac{1}{2}\)