Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dam thu a

cho x,y,z> 0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) . Tìm GTLN của

\(P=\frac{1}{\sqrt{5x^2+2xy+2y^2}}+\frac{1}{\sqrt{5y^2+2yz+2z^2}}+\frac{1}{\sqrt{5z^2+2xz+2x^2}}\)

Nguyễn Việt Lâm
25 tháng 2 2020 lúc 16:06

\(P=\sum\frac{1}{\sqrt{x^2+y^2+4x^2+2xy+y^2}}\le\sum\frac{1}{\sqrt{2xy+4x^2+2xy+y^2}}=\sum\frac{1}{2x+y}\)

\(P\le\sum\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\le\frac{1}{3}\sqrt{2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\frac{\sqrt{2}}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Dương Ngọc Nhi
Xem chi tiết
dbrby
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết
Anh Đỗ Nguyễn Thu
Xem chi tiết
Ichigo Hollow
Xem chi tiết
qưet
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết