Áp dụng Bđt Bunhiacopski ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1x+1y\right)^2=2^2=4\)
\(\Rightarrow2\left(x^2+y^2\right)\ge4\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow Q\ge2\)
Dấu = khi x=y=1
Vậy MinQ=2 khi x=y=1
Áp dụng Bđt Bunhiacopski ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1x+1y\right)^2=2^2=4\)
\(\Rightarrow2\left(x^2+y^2\right)\ge4\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow Q\ge2\)
Dấu = khi x=y=1
Vậy MinQ=2 khi x=y=1
Cho \(x,y,z\in R\) thỏa mãn \(xy+yz+zx=12\) . Tìm GTNN của \(x^2+y^2+z^2\)
1CMR: \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8 với mọi n thuộc z
2a) Tìm GTNN của A=\(x^2+4x+5\)
b)Tìm x,y biết : \(x^2+y^2-4x+6y+13=0\)
Cho x, y, z dương \(\in\) R với x + y + z = xyz. Tìm GTNN của S = \(\dfrac{x}{y^2}+\dfrac{y}{z^2}+\dfrac{z}{x^2}\)
CHO x + y + z = 3
a , tìm GTNN của A= x2 + y2 + z2
b , tìm GTLN của B = xy + yz + xz
giúp đỡ nha mấy bạn
cho B=\(\frac{x^4-5x^2+4}{x^4-10x^2+9}\)
a) tìm các giá trị của x để B có nghĩa
b)Tìm các giá trị của x để B=0
Rút gọn A=\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) biết x+y+z=0
a) GTNN: A=x(x-3)(x-4)(x-7)
b) GTNN: B=2x\(^2\)+y\(^2\)-2xy-2x+3
c) GTNN: A=\(\frac{2}{6x-5-9x^2}\)
d) GTNN: B=\(\frac{3x^2+9x+\text{1}7}{3x^2+9x+7}\)
e) GTNN: A=\(\frac{3-4x}{x^2+\text{1}}\)
f) GTLN: A=\(\frac{3-4x}{x^2+\text{1}}\)
Cho x và y thỏa mãn:
x2 + 2xy + 6x + 6y + 2y2 + 8 = 0
Tìm GTLN và GTNN của biểu thức :
B = x + y +2016
=> Giúp mình nhé, mình đang cần gấp
_____Cám ơn____
Cho các số x,y thỏa mãn đẳng thức \(8x^2+y^2+\dfrac{1}{4x^2}=4\). Tìm GTLN, GTNN của biểu thức P = xy
Giúp tí.
Tìm GTNN :
a) A= (x-1)^2 +(y-3)^2
b) B= 2x^2 +y^2 -2xy -2x +3