Cho x+y=1 \(\left(x,y\ne0\right)\)
chứng minh: \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{z\left(x-y\right)}{x^2y^2+3}=0\)
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x,y > 0 và x2 + y2 = 2. Chứng minh rằng: \(\sqrt{1+2x}+\sqrt{1+2y}\) ≤ \(2\sqrt{3}\)
Cho x, y, z>0. Chứng minh rằng:
\(\dfrac{x}{x+2y+3z}+\dfrac{y}{y+2z+3x}+\dfrac{z}{z+2x+3y}\ge\dfrac{1}{2}\)
Cho x,y,z là số đo ba cạnh của 1 tam giác, chứng minh: \(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)
Cho x, y, z\(\le\) 1. Chứng minh rằng:
x(1-y^3)/y^3+y(1-z^3)/z^3+z(1-x^3)/x^3 \(\ge\) 0
Cho 2 số thực x,y thỏa mãn điều kiện:\(x+y=1\)và xy≠0
CM:\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)