ta có : x+y=1
\(\Leftrightarrow x=1-y\)
khi đó ta có biểu thức M =(1-y)3+y3
= 1-3y+3y2-y3+y3
=3y2-3y+1
= 3(y2-y)+1
=3(y2-2.\(\frac{1}{2}y+\frac{1}{4}\))+1-3.\(\frac{1}{4}\)
= 3 (y-\(\frac{1}{2}\))2 +\(\frac{1}{4}\)\(\le\frac{1}{4}\)
Để M =\(\frac{1}{4}\)thì :
\(\Leftrightarrow3\left(y-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy Max M =\(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)