AM-GM
\(\left(x-2\right)^2+\left(y-4\right)^2+\left(x+\dfrac{4}{x}\right)+\left(\dfrac{80}{y}+5y\right)+3\left(x+y\right)-20\ge2\sqrt{x.\dfrac{4}{x}}+2\sqrt{\dfrac{80}{y}.5y}+3.6-20=4+40+18-20=42\)
đẳng thức xảy ra khi x=2 ;y=4
AM-GM
\(\left(x-2\right)^2+\left(y-4\right)^2+\left(x+\dfrac{4}{x}\right)+\left(\dfrac{80}{y}+5y\right)+3\left(x+y\right)-20\ge2\sqrt{x.\dfrac{4}{x}}+2\sqrt{\dfrac{80}{y}.5y}+3.6-20=4+40+18-20=42\)
đẳng thức xảy ra khi x=2 ;y=4
1) Cho x, y > 0. CMR: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Cho \(x,y>0\). CMR : \(x+\dfrac{4}{y\left(x-y\right)^2}\ge4\)
giúp mk nha
1.Cho \(x\ge2y>0\). Tìm gtnn của \(P=\dfrac{x^2+y^2}{xy}\)
2.CM: \(x\left(x-1\right)+y\left(y-1\right)\ge2\\ \left(x;y>0;x+y\ge6\right)\)
Các bạn ơi giúp mk đi.
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
Cho \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\) và x + y + z khác 0. Tính \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
cho \(x,y,z>0\). chứng minh rằng
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\text{≥}\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\)
Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z = 2. CMR
\(\dfrac{X^2}{Y+Z}+\dfrac{Y^2}{Z+X}+\dfrac{Z^2}{X+Y}\) ≥ 1
cho x,y,z ≠0 và x+y+z ≠0. CMR:
Nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) thì \(\dfrac{1}{x^{2019}}+\dfrac{1}{y^{2019}}+\dfrac{1}{z^{2019}}\)
MÌNH ĐANG CẦN GẤP