\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\right)\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge\dfrac{6x}{y}+\dfrac{6y}{x}\)
\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-4.\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0^{\left(1\right)}\)
\(^{\left(1\right)}\)đúng \(\Rightarrowđpcm\)
Áp dụng BĐT : x4 + y4 ≥ 2x2y2
=> \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2 ( x , y > 0 )
TT , \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x , y > 0 )
Ta có : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) + 4 ≥ 6 ( 1 )
\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 6 ( 2 )
Từ ( 1 ; 2) => đpcm