cho hàm số y=mx^2+(3m-1)x+2m-3. Gọi A là giá trị nhỏ nhất của hàm số. Tìm m sao cho A đạt giá trị lớn nhất
tìm tất cả các giá trị của m sao cho hai parabol \(y=x^2+mx+\left(m+1\right)^2\) và \(y=-x^2-\left(m+2\right)x-2\left(m+1\right)\) cắt nhau tại 2 điểm có hoành độ lần lượt là \(x_1;x_2\) thỏa mãn \(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\) đạt giá trị lớn nhất.
Biết rằng khi m = m0 thì hàm số y = -x2 + 2x + m - 4 đạt giá trị lớn nhất trên đoạn [-1;2] bằng 3. Hỏi m0 thuộc khoảng nào ?
Cho cặp số (\(x;y\)) thỏa mãn hệ bất phương trình
\(\left\{{}\begin{matrix}2y\ge x\\y\le3x\\2x+3y\le12\end{matrix}\right.\)
Tìm GTLN và GTNN của F(\(x;y\)) = \(x+y-2\)
a) Vẽ parabol y = -x^2 + 2x + 3
b) Từ đồ thị chỉ ra x để y > 0, y < 0, lớn hơn hoặc bằng 1
c) Từ đồ thị tìm giá trị lớn nhất của hàm số
Cho hàm số y= 2x^2 -3(m+1)x +m^2 +3m -2 , m là tham số . TÌm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số là lớn nhất
tìm tất cả các giá trị của m sao cho đồ thị hàm số cắt đồ thị hàm số tại \(y=x^2+2mx+4\) đúng 2 điểm phân biệt có hoành độ thỏa mãn
tìm tất cả cá giá trị của tham số m sao cho (P): \(y=x^2-4x+m\) cắt trục Ox tại 2 điểm phân biệt A, B thỏa mãn OA = 3OB
Cho x,y là hai số thực dương thỏa mãn x + y 《1. Tìm giá trị nhỏ nhất của biểu thức Q=x^2+1/x+y^2+1/y