Ta có:\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}+y\right)\left(\sqrt{y^2+2007}-y\right)=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)
\(\Rightarrow2007^2=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)
\(\Rightarrow\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)=2007\)
\(\Rightarrow xy-x\sqrt{y^2+2007}-y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(1)
và \(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{y^2+2007}+y\right)=xy+x\sqrt{y^2+2007}+y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(2)
cộng (1) và (2)
\(\Rightarrow xy+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)
\(\Leftrightarrow\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007-xy\)
\(\Rightarrow x^2y^2+2007\left(x^2+y^2\right)+2007^2=2007^2-2.2007xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow M=0\)