Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\), biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\) biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)
Tính giá trị của biểu thức: \(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\), biết \(xy+\sqrt{\left(1+x^2\right).\left(1+y^2\right)}=a\)
tìm x,y,z để biểu thức sau có giá trị bằng 2
\(A=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
Cho biểu thức: \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) .
Tìm các giá trị x, y nguyên để P có giá trị bằng 2
Cho biểu thức : P = \(\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}\) - \(\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}\) - \(\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
Tính giá trị x;y nguyên thỏa mãn P= 2
Cho x,y,z > 0 và xy + yz + zx = 1
Tính giá trị biểu thức: \(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^2+xy+y^2+15\)
Rút gọn biểu thức:
\(P=\left(\dfrac{1}{xy\sqrt{y}}-\dfrac{1}{xy\sqrt{x}}\right):\left(\dfrac{1}{x^2+xy+2x\sqrt{xy}}+\dfrac{1}{xy+y^2+2y\sqrt{xy}}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)