\(1=x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)
\(P\ge\frac{x+y}{1+\frac{\left(x+y\right)^2}{4}}=\frac{4\left(x+y\right)}{4+\left(x+y\right)^2}\)
Đặt \(x+y=t\le\sqrt{2}\Rightarrow P=\frac{4t}{4+t^2}\)
Ta sẽ chứng minh \(\frac{4t}{4+t^2}\ge\frac{2\sqrt{2}}{3}\Leftrightarrow t^2-3\sqrt{2}t+4\le0\)
\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t-2\sqrt{2}\right)\le0\) (luôn đúng \(\forall t\le\sqrt{2}\))
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)