\(2x^3+2y^3=x^3+x^5+y^3+y^5\ge2x^4+2y^4\)
\(\Rightarrow x^3+y^3\ge x^4+y^4\Rightarrow x^2+y^2+x^3+y^3\ge x^4+x^2+y^4+y^2\ge2x^3+2y^3\)
\(\Rightarrow x^2+y^2\ge x^3+y^3\Rightarrow x+y+x^2+y^2\ge x+x^3+y+y^3\ge2x^2+2y^2\)
\(\Rightarrow x+y\ge x^2+y^2\)
\(\Rightarrow x+y\ge x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow x^2-xy+y^2\le1\Rightarrow x^2+y^2\le1+xy\)
Dấu "=" xảy ra khi \(x=y=1\)
`2x^3 + 2y^3 = x^3 + x^5 + y^3 + y^5 >= 2x^4 + 2y^4`