* Với x , y > 0 , áp dụng BĐT cauchy ta có :
+) \(\dfrac{x+y}{\sqrt{xy}}+\dfrac{4\sqrt{xy}}{x+y}\ge2\sqrt{\dfrac{\left(x+y\right)4\sqrt{xy}}{\sqrt{xy}\left(x+y\right)}}=4\) (1)
+) \(x+y\ge2\sqrt{xy}>0\) \(\Leftrightarrow\) \(\dfrac{1}{x+y}\le\dfrac{1}{2\sqrt{xy}}\)
\(\Leftrightarrow\) \(\dfrac{-3\sqrt{xy}}{x+y}\ge\dfrac{-3\sqrt{xy}}{2\sqrt{xy}}=\dfrac{-3}{2}\) (2)
* Từ (1) và (2)
\(\Rightarrow\) \(D\ge4-\dfrac{3}{2}=\dfrac{5}{2}\) . Dấu '' = '' xra khi x = y