Ta có:\(x+y=6;xy=7\) nên:
\(x^2+y^2=\left(x+y\right)^2-2xy=36-14=22\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=216-126=90\)
\(x^2y^2\left(x+y\right)=7^2.6=294\)
\(\Rightarrow x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=22.90-294=1686\)
Vậy \(x^5+y^5=1686\)