\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)
\(\Rightarrow P_{min}=3\) khi \(x=y=z=1\)
Áp dụng BĐT Cauchy - Schwarz, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
Thay x+y+z=3 vào ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{3}=3\)
Min =3
Dấu "=" xảy ra khi x=y=z=1