Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho x>0, y>0 thỏa mãn \(x+y\ge5\). Tìm giá trị nhỏ nhất của biểu thức: \(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)

Phương Ann
17 tháng 2 2018 lúc 19:17

Áp dụng bất đẳng thức AM - GM:

\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)

\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)

\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)

\(=\dfrac{43}{2}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)

Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Thế Hiếu
Xem chi tiết
Trương Huy Hoàng
Xem chi tiết
Big City Boy
Xem chi tiết
Xem chi tiết
Lan_nhi
Xem chi tiết
Anh Lan
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Rosie
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết