Cho x, y, z > 0 và khác nhau đôi một. Chứng minh rằng giá trị của biểu thức P không phụ thuộc và giá trị của các biến
\(P=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
Cho 3 số dương x, y, z thỏa mãn điều kiện : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\) . Chứng minh rằng : \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\)≤1
Cho x,y,z > 0 , x + y + z <= \(\frac{3}{2}\). C/m : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}>=\frac{3}{2}\sqrt{17}\)
Cho 3 số thực x,y,z thỏa mãn đẳng thức \(\sqrt{x+y}=\sqrt{z+x}+\sqrt{y+z}\)
CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Cho x,y,z >0 thỏa x+y+z=xyz.Chứng minh rằng:
\(P=\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\le\frac{3}{2}\)
Cho 3 số thực dương x,z,y tm x+y+z=\(\sqrt{2}\). Tìm MIN T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{y+x}}{z}+\frac{\sqrt{x+z}}{y})\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
1. Rút gọn: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
2. Cho 3 số dương thỏa x + y + z = 2
Tìm GTNN của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)