Cho x, y, z dương TM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm min \(T=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
Cho 3 số dương x, y, z thỏa mãn điều kiện : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\) . Chứng minh rằng : \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\)≤1
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
1. Rút gọn: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
2. Cho 3 số dương thỏa x + y + z = 2
Tìm GTNN của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x, y, z là các số thực dương và thỏa mãn \(\sqrt{xyz}=4\). Tính giá trị của biểu thức:
\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{2\sqrt{z}}{\sqrt{zx}+2\sqrt{z}+2}\)
Cho 3 số thực x,y,z thỏa mãn đẳng thức \(\sqrt{x+y}=\sqrt{z+x}+\sqrt{y+z}\)
CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Cho x, y, z là các số thực dương thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Tính giá trị của biểu thức: \(P=\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
x+y=(\(\sqrt{x}+\sqrt{y}-\sqrt{z}\))^2
cmr \(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)